Wilfried Suhr

3. 1. 2003

On the determination of the angular distance between sun und venus.

<u>Measuring principle</u>: Two rods are beeing positioned at A und C, so that their pointed ends get in line with the ray directed from the eye to venus. Simultaneously the sun projects onto a wall at B the shadow of the rod at C. The angle $\angle BCA$ from the resulting triangle ABC is corresponding to the angular distance between sun and venus. By measuring the lengths of a,b and c, the angle $\angle BCA$ can be derived by calculation.

date	local time	<i>a</i> [cm]	b [cm]	<i>c</i> [cm]	∠BCA
21. 12. 2002	9:10	226,5	64,6	187	45,5°
	9:30	220	68,0	179	45,5°
26. 12. 2002	9:15	190,5	52,7	157,5	44,7°
	9:30	185,5	52,6	152,5	44,5°
	9:35	183,5	52,3	150,5	44,2°

Measured data: (Place: La Palma)