On the determination of the angular distance between sun und venus.

Measuring principle: Two rods are beeing positioned at \boldsymbol{A} und \boldsymbol{C}, so that their pointed ends get in line with the ray directed from the eye to venus. Simultaneously the sun projects onto a wall at \boldsymbol{B} the shadow of the rod at \boldsymbol{C}. The angle $\measuredangle B C A$ from the resulting triangle $\boldsymbol{A B C}$ is corresponding to the angular distance between sun and venus. By measuring the lengths of a, b and c , the angle $\measuredangle B C A$ can be derived by calculation.

Measured data: (Place: La Palma)

date	local time	$\boldsymbol{a}[\mathrm{cm}]$	$\boldsymbol{b}[\mathrm{cm}]$	$\boldsymbol{c}[\mathrm{cm}]$	$\measuredangle B C A$
21.12 .2002	$9: 10$	226,5	64,6	187	$45,5^{\circ}$
	$9: 30$	220	68,0	179	$45,5^{\circ}$
26.12 .2002	$9: 15$	190,5	52,7	157,5	$44,7^{\circ}$
	$9: 30$	185,5	52,6	152,5	$44,5^{\circ}$
	$9: 35$	183,5	52,3	150,5	$44,2^{\circ}$

