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The advantage of determining the distance to the Moon by measuring its diur-
nal parallax is that one doesn’t need a distant partner for simultaneous obser-
vations. In this paper this method is demonstrated with position data calculated
with computer programs. The goal of this article is to animate the reader to
execute the parallax observation in reality.

1 Measurements

The geographical position of the observer is assumed to be (ϕ, λ) = (50◦, 10◦).
In the night November 28/29th the topocentric equatorial coordinates of the Moon

are measured twice, for instance by photographing it and measuring its angular distances
to bright stars in the neighbourhood.

1. 19:00 UT: α1 = 4h30m48s = 67.70◦, δ1 = 20◦01′48′′ = 20.03◦

2. 5:00 UT: α2 = 4h47m11s = 71.795◦, δ2 = 20◦20′16′′ = 20.34◦

In order to measure the proper motion of the Moon a third position measurement is
done one ,,moon day” (24h50m) later:

3. 19:50 UT: α3 = 5h23m13s = 80.80◦, δ3 = 20◦20′16′′ = 20.34◦

2 Determination of the parallactic effect

At the times of measurements 1 and 3 the relative positions of the Earth’s center, the
Moon and the observer are the same. Therefore, (nearly) no parallactic effect must be
taken into account when comparing both Moon’s positions and the averaged speed of the
Moon’s proper motion can easily be calculated:

∆α = α3 − α1 = 13.10◦ =⇒ α̇ = 0.528◦/h (1)

∆δ = δ3 − δ1 = 0.31◦ =⇒ δ̇ = 0.012◦/h (2)
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Figure 1: The two positions of the observer relative to the Moon and their (projected)
distance with respect to the diameter of the Earth

Assuming the proper motion to be of constant speed the ,,parallax free” position
(α′2, δ

′
2) of the Moon at time t2 can be calculated:

α′2 = α1 + α̇(t2 − t1) = 72.98◦ (3)

δ′2 = δ2 + δ̇(t2 − t1) = 20.15◦ (4)

The parallactic effect between t1 and t2, therefore, is:

∆αp = α2 − α′2 = −1.18◦ (5)

∆δp = δ2 − δ′2 = 0.07◦ (6)

=⇒ ∆p =
√

(∆αp cos δ)2 + (∆δp)2 = 1.11◦ (7)

This angle of parallax is more than twice as large as the Moon’s angular diameter!

3 Determination of the distance to the Moon

When determining the Moon’s parallax by simultaneously measuring its topocentric co-
ordinates the base line of the measured parallax is the distance between both observers
as seen from the Moon. When the same observer measures the Moon’s position twice at
the same place but at different times he is ,,transported” to the second relative position
to the Moon by the Earth’s rotation. Because the Moon has moved in the meantime the
second measured position must be corrected by the parallax effect determined above.
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Figure 2: The night side of the Earth and the positions of the observation site as seen
from the Moon at 19:00 and 5:00 UT

3.1 Rough but vivid method

With the program HomePlanet1 it is possible to look to the Earth from the Moon
(fig. 2). In this way it is possible to ,,observe” the relative position change between the
times of observation2. By superposing both pictures (fig. 1) it is possible to measure the
baseline length l of the parallax measurement:

d(Obs1, Obs2) = 500px
d(Earth) = 781px

}
=⇒ l = 1.28RE (8)

With the parallactic effect ∆p derived above (eq. 7) we finally get the distance dM to
the Moon:

dM =
l

tan ∆p
= 62.3RE (9)

The true geocentric distance in this night is dM = 63.7RE.

3.2 Algebraic calculation

The usual way of determining the geometrical parallax of an celestial object is to measure
its topocentric position simultaneously from distant sites. This has been done in several
projects: ,,Simultaneously Photographing of the Moon and Determining its Distance”3,

1http://www.fourmilab.ch
2To be exakt the second picture must be ,,observed” from the first position of the Moon (fig. 2). Even

that is possible with HomePlanet but the little difference doesn’t matter for this method.
3http://www.didaktik.physik.uni-due.de/ backhaus/moonproject.htm
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,,IYA2009: The distance to the Moon”4 and ,,Measuring the Distance to the Sun”5. The
correct algorithm for the calculation has been published therein6.

It is possible to use that algorithm for the evaluation of observations described here
in the following way: If one adds the parallactic displacement in equations (5) and (6)
to the observed topocentric position (α1, δ1) one will get the position the observer would
have measured at time t2 if the proper motion of the Moon had been zero.

α′′2 = α1 + ∆αp = 65.96◦ (10)

δ′′2 = δ1 + ∆δp = 20.10◦. (11)

With this interpretation we get two ,,simultaneously” measured positions of the ,,fixed
Moon” (α1, δ1) and (α′′2, δ

′′
2) which can be evaluated by using the former algorithm. For

instance, this may be done with the worksheet diurnalParallaxe.xls. The result is

61.9RE ≤ dM ≤ 62.3RE (12)

3.3 Combination of many measurements during the night

When the parallactic effects are calculated for several position measurements during the
same night the graphical representation of the results will show an ellipse like figure as
can be calculated and drawn with the program Mondparallaxe7 (fig. 3).

4http://www.didaktik.physik.uni-due.de/IYA2009/IYA2009-MoonsParallax.html
5http://www.eso.org/public/outreach/eduoff/aol/market/collaboration/solpar/
6http://www.didaktik.physik.uni-due.de/IYA2009/IYAParallaxe.pdf, in German only, and

http://www.eso.org/public/outreach/eduoff/aol/market/collaboration/solpar/solpar-det.html,
in English

7http://www.didaktik.physik.uni-due.de/ backhaus/AstroMaterialien/intern/Programme/
Mondparallaxe.zip
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Figure 3: The parallactic shifts of the Moon measured during one night form a figure
which can be interpreted as parallactic ellipse formed by the motion of the observer due
to the Earth’s rotation
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